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Abstract

GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear matrix
inequality relaxations of the (generally non-convex) global optimization problem of
minimizing a multivariable polynomial function subject to polynomial inequality,
equality or integer constraints. It generates a series of lower bounds monotonically
converging to the global optimum. Global optimality is detected and isolated op-
timal solutions are extracted automatically. Numerical experiments show that for
most of the small- and medium-scale problems described in the literature, the global
optimum is reached at low computational cost.

1 Introduction

GloptiPoly is a Matlab utility that builds and solves convex linear matrix inequality (LMI)
relaxations of (generally non-convex) global optimization problems with multivariable
real-valued polynomial criterion and constraints. It is based on the theory described in
[6, 7]. Related results can be found also in [10] and [11]. GloptiPoly does not intent to
solve non-convex optimization problems globally, but allows to solve a series of convex
relaxations of increasing size, whose optima are guaranteed to converge monotonically to
the global optimum.

GloptiPoly solves LMI relaxations with the help of the solver SeDuMi [12], taking full
advantage of sparsity and special problem structure. Optionally, a user-friendly inter-
face called DefiPoly, based on Matlab Symbolic Math Toolbox, can be used jointly with
GloptiPoly to define the optimization problems symbolically with a Maple-like syntax.

GloptiPoly is aimed at small- and medium-scale problems. Numerical experiments illus-
trate that for most of the problem instances available in the literature, the global optimum
is reached exactly with LMI relaxations of medium size, at a relatively low computational
cost.
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2 Installation

GloptiPoly requires Matlab version 5.3 or higher [9], together with the freeware solver Se-
DuMi version 1.05 [12]. Moreover, the Matlab source file gloptipoly.m must be installed
in the current working directory, see

www.laas.fr/∼henrion/software/gloptipoly

The optional, companion Matlab source files to GloptiPoly, described throughout this
manuscript, can be found at the same location.

3 Getting started
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Figure 1: Six-hump camel back function.

Consider the classical problem of minimizing globally the two-dimensional six-hump camel
back function [4, Pb. 8.2.5]

f(x1, x2) = x2
1(4− 2.1x2

1 + x4
1/3) + x1x2 + x2

2(−4 + 4x2
2).

The function has six local minima, two of them being global minima, see figure 1.
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To minimize this function we build the coefficient matrix

P =



0 0 −4 0 4
0 1 0 0 0
4 0 0 0 0
0 0 0 0 0
−2.1 0 0 0 0

0 0 0 0 0
1/3 0 0 0 0


where each entry (i, j) in P contains the coefficient of the monomial xi1x

j
2 in polynomial

f(x1, x2). We invoke GloptiPoly with the following Matlab script:

>> P(1,3) = -4; P(1,5) = 4; P(2,2) = 1;

>> P(3,1) = 4; P(5,1) = -2.1; P(7,1) = 1/3;

>> output = gloptipoly(P);

On our platform, a Sun Blade 100 workstation with 640 Mb of RAM running under SunOS
5.8, we obtain the following output:

GloptiPoly 2.0 - Global Optimization over Polynomials with SeDuMi
Number of variables = 2
Number of constraints = 0
Maximum polynomial degree = 6
Order of LMI relaxation = 3
Building LMI. Please wait..
Number of LMI decision variables = 27
Size of LMI constraints = 100
Sparsity of LMI constraints = 3.6667% of non-zero entries
Norm of perturbation of criterion = 0
Numerical accuracy for SeDuMi = 1e-09
No feasibility radius
Solving LMI problem with SeDuMi..
...
CPU time = 0.61 sec
LMI criterion = -1.0316
Checking relaxed LMI vector with threshold = 1e-06
Relaxed vector reaches a criterion of -7.2166e-15
Relaxed vector is feasible
Detecting global optimality (rank shift = 1)..
Relative threshold for rank evaluation = 0.001
Moment matrix of order 1 has size 3 and rank 2
Moment matrix of order 2 has size 6 and rank 2
Rank condition ensures global optimality
Extracting solutions..
Relative threshold for basis detection = 1e-06
Maximum relative error = 3.5659e-08
2 solutions extracted

3
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The first field output.status in the output structure indicates that the global minimum
was reached, the criterion at the optimum is equal to output.crit = -1.0316, and the
two globally optimal solutions are returned in cell array output.sol:

>> output

output =

status: 1

crit: -1.0316

sol: {[2x1 double] [2x1 double]}

>> output.sol{:}

ans =

0.0898

-0.7127

ans =

-0.0898

0.7127

4 GloptiPoly’s input: defining and solving an opti-

mization problem

4.1 Handling constraints. Basic syntax

Consider the concave optimization problem of finding the radius of the intersection of
three ellipses [5]:

max x2
1 + x2

2

s.t. 2x2
1 + 3x2

2 + 2x1x2 ≤ 1
3x2

1 + 2x2
2 − 4x1x2 ≤ 1

x2
1 + 6x2

2 − 4x1x2 ≤ 1.

In order to specify both the objective and the constraint to GloptiPoly, we first transform
the problem into a minimization problem over non-negative constraints, i.e.

min

 1
x1

x2
1

T  0 0 −1
0 0 0
−1 0 0

 1
x2

x2
2


s.t.

 1
x1

x2
1

T  1 0 −3
0 −2 0
−2 0 0

 1
x2

x2
2

 ≥ 0

 1
x1

x2
1

T  1 0 −2
0 4 0
−3 0 0

 1
x2

x2
2

 ≥ 0

 1
x1

x2
1

T  1 0 −6
0 4 0
−1 0 0

 1
x2

x2
2

 ≥ 0.
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Then we invoke GloptiPoly with a four-matrix input cell array: the first matrix corre-
sponds to the criterion to be minimized, and the remaining matrices correspond to the
non-negative constraints to be satisfied:

>> P{1} = [0 0 -1; 0 0 0; -1 0 0];

>> P{2} = [1 0 -3; 0 -2 0; -2 0 0];

>> P{3} = [1 0 -2; 0 4 0; -3 0 0];

>> P{4} = [1 0 -6; 0 4 0; -1 0 0];

>> gloptipoly(P);

When running GloptiPoly, we obtain an LMI criterion of −0.42701 which is a lower bound
on the global minimum. Here it turns out that the computed bound is equal to the global
optimum as shown in figure 2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

2x12+3x22+2x1x2=1
3x12+2x22−4x1x2=1
x12+6x22−4x1x2=1
x12+x22=0.4270

Figure 2: Radius of the intersection of three ellipses.

More generally, when input argument P is a cell array of coefficient matrices, the instruc-
tion gloptipoly(P) solves the problem of minimizing the criterion whose polynomial
coefficients are contained in matrix P{1}, subject to the constraints that the polynomials
whose coefficients are contained in matrices P{2}, P{3}.. are all non-negative.
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4.2 Handling constraints. General syntax

To handle directly maximization problems, non-positive inequality or equality constraints,
a more explicit but somehow more involved syntax is required. Input argument P must
be a cell array of structures with fields:

P{i}.c - polynomial coefficient matrices;

P{i}.t - identification string, either

’min’ - criterion to minimize, or

’max’ - criterion to maximize, or

’>=’ - non-negative inequality constraint, or

’<=’ - non-positive inequality constraint, or

’==’ - equality constraint.

For example, if we want to solve the optimization problem [4, Pb. 4.9]

min −12x1 − 7x2 + x2
2

s.t. −2x4
1 − x2 + 2 = 0

0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 3

we use the following script:

>> P{1}.c = [0 -7 1; -12 0 0]; P{1}.t = ’min’;

>> P{2}.c = [2 -1; 0 0; 0 0; 0 0; -2 0]; P{2}.t = ’==’;

>> P{3}.c = [0; -1]; P{3}.t = ’<=’;

>> P{4}.c = [-2; 1]; P{4}.t = ’<=’;

>> P{5}.c = [0 -1]; P{5}.t = ’<=’;

>> P{6}.c = [-3 1]; P{6}.t = ’<=’;

>> gloptipoly(P);

We obtain −16.7389 as the global minimum, with optimal solution x1 = 0.7175 and
x2 = 1.4698, see figure 3.

4.3 Sparse polynomial coefficients. Saving memory

When defining optimization problems with a lot of variables or polynomials of high de-
grees, the coefficient matrix associated with a polynomial criterion or constraint may
require a lot of memory to be stored in Matlab. For example in the case of a quadratic
program with 10 variables, the number of entries of the coefficient matrix may be as large
as (2 + 1)10 = 59049.
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Figure 3: Contour plot of −12x1 − 7x2 + x2
2 with constraint −2x4

1 − x2 + 2 = 0 in dashed
line.

An alternative syntax allows to define coefficient matrices of Matlab sparse class. Because
sparse Matlab matrices cannot have more than two dimensions, we store them as sparse
column vectors in coefficient field P.c, with an additional field P.s which is the vector of
dimensions of the coefficient matrix, as returned by Matlab function size if the matrix
were not sparse.

For example, to define the quadratic criterion

min
10∑
i=1

ix2
i

the instructions

>> P.c(3,1,1,1,1,1,1,1,1,1) = 1;

>> P.c(1,3,1,1,1,1,1,1,1,1) = 2;

...

>> P.c(1,1,1,1,1,1,1,1,1,3) = 10;

would create a 10-dimensional matrix P.c requiring 472392 bytes for storage. The equiv-
alent instructions

7
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>> P.s = 3*ones(1,10);

>> P.c = sparse(prod(P.s),1);

>> P.c(sub2ind(P.s,3,1,1,1,1,1,1,1,1,1)) = 1;

>> P.c(sub2ind(P.s,1,3,1,1,1,1,1,1,1,1)) = 2;

...

>> P.c(sub2ind(P.s,1,1,1,1,1,1,1,1,1,3)) = 10;

create a sparse matrix P.c requiring only 140 bytes for storage.

Note however that the maximum index allowed by Matlab to refer to an element in a
vector is 231 − 2 = 2147483646. As a result, if d denotes the maximum degree and n the
number of variables in the optimization problem, then the current version of GloptiPoly
cannot handle polynomials for which (d + 1)n > 231. For example, GloptiPoly cannot
handle quadratic polynomials with more than 19 variables.

4.4 DefiLin and DefiQuad: easy definition of linear and quadratic
expressions

Linear and quadratic expressions arise frequently in optimization problems. In order to
enter these expressions easily into GloptiPoly, we wrote two simple Matlab scripts called
DefiLin and DefiQuad respectively. Refer to section 2 to download the Matlab source files
defilin.m and defiquad.m.

Given a matrix A and a vector b, the instruction

P = defilin(A, b, type)

allows to define a linear expression whose type is specified by the third input argument

min - linear criterion Ax+ b to minimize, or

max - linear criterion Ax+ b to maximize, or

>= - inequality Ax+ b ≥ 0, or

<= - inequality Ax+ b ≤ 0, or

== - equality Ax+ b = 0.

By default, b=0 and type=’>=’. Output argument P is then a cell array of structures
complying with the sparse syntax introduced in 4.3. There are as many structures in P

as the number of rows in matrix A.

Similarly, given a square matrix A, a vector b and a scalar c, the instruction

P = defiquad(A, b, c, type)

8
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allows to define a quadratic expression xTAx+ 2xTb+ c. Arguments type and P have the
same meaning as above.

For example, consider the quadratic problem [4, Pb. 3.5]:

min −2x1 + x2 − x3

s.t. xTATAx− 2bTAx+ bT b− 0.25(c− d)T (c− d) ≥ 0
x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3

where

A =

 0 0 1
0 −1 0
−2 1 −1

 b =

 1.5
−0.5
−5

 c =

 3
0
−4

 d =

 0
−1
−6

 .
To define this problem with DefiLin and DefiQuad we use the following Matlab script:

>> A = [0 0 1;0 -1 0;-2 1 -1];

>> b = [1.5;-0.5;-5]; c = [3;0;-4]; d = [0;-1;-6];

>> crit = defilin([-2 1 -1], [], ’min’);

>> quad = defiquad(A’*A, -b’*A, b’*b-0.25*(c-d)’*(c-d));

>> lin = defilin([-1 -1 -1;0 -3 -1;eye(3);-1 0 0;0 0 -1], [4;6;0;0;0;2;3]);

>> P = {crit{:}, quad, lin{:}};

4.5 DefiPoly: defining polynomial expressions symbolically

When multivariable expressions are not linear or quadratic, it may be lengthy to build
polynomial coefficient matrices. We wrote a Matlab/Maple script called DefiPoly to define
polynomial objective and constraints symbolically. It requires the Symbolic Math Toolbox
version 2.1, which is the Matlab gateway to the kernel of Maple V [8]. See section 2 to
retrieve the Matlab source file defipoly.m.

The syntax of DefiPoly is as follows:

P = defipoly(poly, indets)

where both input arguments are character strings. The first input argument poly is a
Maple-valid polynomial expression with an additional keyword, either

min - criterion to minimize, or

max - criterion to maximize, or

>= - non-negative inequality, or

<= - non-positive inequality, or

9
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== - equality.

The second input argument indets is a comma-separated ordered list of indeterminates.
It establishes the correspondence between polynomial variables and indices in the coeffi-
cient matrices. For example, the instructions

>> P{1} = defipoly(’min -12*x1-7*x2+x2^2’, ’x1,x2’);

>> P{2} = defipoly(’-2*x1^4+2-x2 == 0’, ’x1,x2’);

>> P{3} = defipoly(’0 <= x1’, ’x1,x2’);

>> P{4} = defipoly(’x1 <= 2’, ’x1,x2’);

>> P{5} = defipoly(’0 <= x2’, ’x1,x2’);

>> P{6} = defipoly(’x2 <= 3’, ’x1,x2’);

build the structure P defined in section 4.2.

When there are more than 100 entries in the coefficient matrix, DefiPoly switches auto-
matically to GloptiPoly’s sparse coefficient format, see section 4.3.

One can also specify several expressions at once in a cell array of strings, the output
argument being then a cell array of structures. For example the instruction

>> P = defipoly({’min -12*x1-7*x2+x2^2’, ’-2*x1^4+2-x2 == 0’, ...

’0 <= x1’, ’x1 <= 2’, ’0 <= x2’, ’x2 <= 3’}, ’x1,x2’);

is equivalent to the six instructions above.

4.6 Increasing the order of the LMI relaxation

GloptiPoly solves convex LMI relaxations of generally non-convex problems, so it may
happen that it does not return the global optimum but a lower or upper bound thereof.
With the syntax used so far, GloptiPoly solves the simplest LMI relaxation, called Shor’s
relaxation in the case of non-convex quadratic programming. As described in [6, 7], there
exist other, more complicated LMI relaxations, classified according to their order.

When the relaxation order increases, the number of variables as well as the dimension of
the LMI increase as well. Moreover, the successive LMI feasible sets are inscribed within
each other. More importantly, the series of optima of LMI relaxations of increasing orders
converges monotonically to the global optimum. For a lot of practical problems, the exact
global optimum is reached quickly, at a small relaxation order (say 2, 3 or 4).

The order of the LMI relaxation, a strictly positive integer, can be specified to GloptiPoly
as follows:

gloptipoly(P, order)

10
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The minimal relaxation order is such that twice the order is greater than or equal to
the maximal degree occurring in the polynomial expressions of the original optimization
problem. By default, it is the order of the LMI relaxation solved by GloptiPoly when there
is no second input argument. If the specified order is less than the minimal relaxation
order, an error message is issued.

As an example, consider quadratic problem [4, Pb 3.5] introduced in section 4.4. When
applying LMI relaxations of increasing orders to this problem we obtain a monotically
increasing series of lower bounds on the global optimum, given in table 1. It turns out

Relaxation LMI Number of Size of CPU time
order optimum LMI variables LMI in seconds

1 -6.0000 9 24 0.22
2 -5.6923 34 228 2.06
3 -4.0685 83 1200 4.13
4 -4.0000 164 4425 6.47
5 -4.0000 285 12936 32.7
6 -4.0000 454 32144 142

Table 1: Characteristics of successive LMI relaxations.

that the global optimum -4 is reached at the fourth LMI relaxation.

One can notice that the number of LMI variables and the size of the LMI problem, hence
the overall computational time, increase quickly with the relaxation order.

4.7 Integer constraints

GloptiPoly can handle integer constraints on some of the optimization variables. An
optional additional field

P{i}.v - vector of integer constraints

can be inserted into GloptiPoly’s input cell array P. This field is required only once in
the problem definition, at an arbitrary index i. If the field appears more than once, then
only the field corresponding to the largest index i is valid.

Each entry in vector P{i}.v refers to one optimization variable. It can be either

0 - unrestricted continuous variable, or

-1 - discrete variable equal to −1 or +1, or

+1 - discrete variable equal to 0 or +1.

11
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For example, consider the quadratic 0-1 problem [4, Pb. 13.2.1.1]:

min


1
x1

x2

x3

x4


T 

0 3 4 2 −1
3 −1/2 1 0 0
4 1 −1/2 1 0
2 0 1 −1/2 1
−1 0 0 1 −1/2




1
x1

x2

x3

x4


s.t. −1 ≤ x1x2 + x3x4 ≤ 1

−3 ≤ x1 + x2 + x3 + x4 ≤ 2
xi ∈ {−1, +1} , i = 1, . . . , 4.

The problem can be solved with the following script:

>> P = defipoly({[’min (-x1^2-x2^2-x3^2-x4^2)/2+’ ...

’2*(x1*x2+x2*x3+x3*x4)+2*(3*x1+4*x2+2*x3-x4)’],...

’-1<=x1*x2+x3*x4’, ’x1*x2+x3*x4<=1’,...

’-3<=x1+x2+x3+x4’, ’x1+x2+x3+x4<=2’}, ’x1,x2,x3,x4’);

>> P{1}.v = [-1 -1 -1 -1];

>> output = gloptipoly(P);

We obtain the global optimum −20 at the first LMI relaxation, with solution x1 = x2 =
x3 = −1 and x4 = 1:

>> output.crit

ans =

-20.0000

>> output.sol{:}’

ans =

-1.0000 -1.0000 -1.0000 1.0000

Another, classical integer programming problem is the Max-Cut problem. Given an undi-
rected graph with weighted edges, it consists in finding a partition of the set of nodes
into two parts so as to maximize the sum of the weights on the edges that are cut by
the partition. If wij denotes the weight on the edge between nodes i and j, the Max-Cut
problem can be formulated as

max 1
2

∑
i<j wij(1− xixj)

s.t. xi ∈ {−1, +1} .

Given the weighted adjacency matrix W with entries wij, the instruction

P = defimaxcut(W)

transforms a Max-Cut problem into GloptiPoly’s sparse input format. To download func-
tion defimaxcut.m, consult section 2.

12
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Figure 4: Antiweb AW 2
9 graph.

For example, consider the antiweb AW 2
9 graph [1, p. 67] shown in figure 4 with unit

adjacency matrix

W =



0 1 1 0 0 0 0 1 1
1 0 1 1 0 0 0 0 1
1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 1 1 0 1 1 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1
1 0 0 0 0 1 1 0 1
1 1 0 0 0 0 1 1 0


.

Entering W into Matlab’s environment, and running the instruction

>> gloptipoly(defimaxcut(W), 3);

to solve the third LMI relaxation, GloptiPoly returns the global optimum 12. Note that
none of the LMI relaxation methods described in [1] could reach the global optimum.

5 GloptiPoly’s output: detecting global optimality

and retrieving globally optimal solutions

GloptiPoly is designed to solve an LMI relaxation of a given order, so it can be invoked
iteratively with increasing orders until the global optimum is reached, as shown in section
4.6. Asymptotic convergence of the optimal values of the relaxations to the global optimal

13
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value of the original problem is ensured when the compact set of feasible solutions defined
by polynomial inequalities satisfies a technical condition, see [6, 7]. In particular, this
condition is satisfied if the feasible set is a polytope or when dealing with discrete problems.
Moreover, if one knows that there exists a global minimizer with Euclidean norm less than
M , then adding the quadratic constraint xTx ≤ M2 in the definition of the feasible set
will ensure that the required condition of convergence is satisfied.

Starting with version 2.0, a module has been implemented into GloptiPoly to detect global
optimality and extract optimal solutions automatically.

The first output argument of GloptiPoly is made of the following fields:

output.status - problem status;

output.crit - LMI criterion;

output.sol - globally optimal solutions.

The following cases can be distinguished:

output.status = -1 - the relaxed LMI problem is infeasible or could not be solved (see
the description of output field sedumi.pinfo in section 6.1 for more information),
in which case output.crit and output.sol are empty;

output.status = 0 - it is not possible to detect global optimality at this relaxation
order, in which case output.crit contains the optimum criterion of the relaxed
LMI problem and output.sol is empty;

output.status = +1 - the global optimum has been reached, output.crit is the glob-
ally optimal criterion, and globally optimal solutions are stored in cell array output.sol.

See section 6.5 for more information on the way GloptiPoly detects global optimality and
extracts globally optimal solutions.

As an illustrative example, consider problem [4, Pb 2.2]:

>> P = defipoly({[’min 42*x1+44*x2+45*x3+47*x4+47.5*x5’ ...

’-50*(x1^2+x2^2+x3^2+x4^2+x5^2)’],...

’20*x1+12*x2+11*x3+7*x4+4*x5<=40’,...

’0<=x1’,’x1<=1’,’0<=x2’,’x2<=1’,’0<=x3’,’x3<=1’,...

’0<=x4’,’x4<=1’,’0<=x5’,’x5<=1’},’x1,x2,x3,x4,x5’);

When solving the first LMI relaxation, we obtain the following output:

14
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>> output = gloptipoly(P)

...

SeDuMi primal problem is infeasible

SeDuMi dual problem may be unbounded

Try to enforce feasibility radius

output =

status: -1

crit: []

sol: {}

showing that the relaxation is not stringent enough and corresponds to an unbounded
LMI problem. So we try the second LMI relaxation:

>> output = gloptipoly(P, 2)

...

LMI criterion = -17.9189

Checking relaxed LMI vector with threshold = 1e-06

Relaxed vector reaches a criterion of 18.825

Relaxed vector is feasible

...

Impossible to detect global optimality

LMI criterion is a lower bound on the global minimum

output =

status: 0

crit: -17.9189

sol: {}

The LMI criterion is equal to −17.9189 and the relaxed vector returned by GloptiPoly is
feasible but leads to a suboptimal criterion (18.825 > −17.9189) so the global optimum
has not been reached. Eventually, we try the third LMI relaxation:

>> output = gloptipoly(P, 3)

...

LMI criterion = -17

Checking relaxed LMI vector with threshold = 1e-06

Relaxed vector reaches a criterion of -16.9997

Relaxed vector is feasible

...

One solution extracted

output =

status: 1

crit: -17.0000

sol: {[5x1 double]}

The relaxed vector returned by GloptiPoly is now feasible and the LMI criterion of −17
is reached by the globally optimal solution x1 = x2 = x4 = 1, x3 = x5 = 0:

15
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>> output.sol{:}’

ans =

1.0000 1.0000 0.0000 1.0000 0.0000

6 Advanced use of GloptiPoly

This section collects material on more advanced use and tuning of GloptiPoly. It is
assumed that the reader is familiar with the contents of sections 4 and 5.

6.1 SeDuMi problem structure

With a second input argument

[output, sedumi] = gloptipoly(P)

GloptiPoly can provide information on how the LMI relaxation problem is stored and
solved by SeDuMi. To understand the meaning of the various fields in this output struc-
ture, it is better to proceed with a basic example.

Consider the well-known problem of minimizing Rosenbrock’s banana function

min (1− x1)2 + 100(x2 − x2
1)2 = −(−1 + 2x1 − x2

1 − 100x2
2 + 200x2

1x2 − 100x4
1)

whose contour plot is shown on figure 5. To build LMI relaxations of this problem, we
replace each monomial with a new decision variable:

x1 → y10

x2 → y01

x2
1 → y20

x1x2 → y11

x2
2 → y02

x3
1 → y30

x2
1x2 → y21

etc..

Decision variables yij satisfy non-convex relations such as y10y01 = y11 or y20 = y2
10 for

example. To relax these non-convex relations, we enforce the LMI constraint
1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 ∈ K
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Figure 5: Contour plot of Rosenbrock’s banana function.

where K is the cone of 6 × 6 PSD matrices. Following the terminology introduced in
[6, 7], the above matrix is referred to as the moment, or measure matrix associated with
the LMI relaxation. Because the above moment matrix contains relaxations of monomials
of degree up to 2+2=4, it is referred to as the second-degree moment matrix. The above
upper-left 3x3 submatrix contains relaxations of monomials of degree up to 1+1=2, so it
is referred to as the first-degree moment matrix.

Now replacing the monomials in the criterion by their relaxed variables, the first LMI
relaxation of Rosenbrock’s banana function minimization reads

max −1 + 2y10 − y20 − 100y02 + 200y21 − 100y40

s.t.


1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 ∈ K.

For a comprehensive description of the way LMI relaxations are build (relaxations of
higher orders, moment matrices of higher degrees and moment matrices associated with
constraints), the interested reader is advised to consult [6, 7]. All we need to know here
is that an LMI relaxation of a non-convex optimization problem can be expressed as a

17



www.manaraa.com

convex conic optimization problem

max bTy
s.t. c− ATy ∈ K

which is called the dual problem in SeDuMi. Decision variables y are called LMI relaxed
variables. Associated with the dual problem is the primal SeDuMi problem:

min cTx
s.t. Ax = b

x ∈ K.

In both problems K is the same self-dual cone made of positive semi-definite (PSD)
constraints. Problem data can be found in the structure sedumi returned by GloptiPoly:

sedumi.A, sedumi.b, sedumi.c - LMI problem data A (matrix), b (vector), c (vector);

sedumi.K - structure of cone K;

sedumi.x - optimal primal variables x (vector);

sedumi.y - optimal dual variables y (vector);

sedumi.info - SeDuMi information structure;

with additional fields specific to GloptiPoly:

sedumi.M - moment matrices (cell array);

sedumi.pows - variable powers (matrix).

The dimensions of PSD constraints are stored in the vector sedumi.K.s. Some compo-
nents in K may be unrestricted, corresponding to equality constraints. The number of
equality constraints is stored in sedumi.K.f. See SeDuMi user’s guide for more informa-
tion on the cone structure of primal and dual problems.

The structure sedumi.info contains information about algorithm convergence and feasi-
bility of primal and dual SeDuMi problems:

when sedumi.info.pinf = sedumi.info.dinf = 0 then an optimal solution was found;

when sedumi.info.pinf = 1 then SeDuMi primal problem is infeasible and the LMI
relaxation may be unbounded (see section 6.3 to handle this);

when sedumi.info.dinf = 1 then SeDuMi dual problem is infeasible and the LMI
relaxation, hence the original optimization problem may be infeasible as well;

when sedumi.info.numerr = 0 then the desired accuracy was achieved (see section
6.2);
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when sedumi.info.numerr = 1 then numerical problems occurred and results may be
inaccurate (tuning the desired accuracy may help, see section 6.2);

when sedumi.info.numerr = 2 then SeDuMi completely failed due to numerical prob-
lems.

Refer to SeDuMi user’s guide for a more comprehensive description of the information
structure sedumi.info.

Output parameter sedumi.pows captures the correspondance between LMI relaxed vari-
ables and monomials of the original optimization variables. In the example studied above,
we have

sedumi.pows =

1 0

0 1

2 0

1 1

0 2

3 0

2 1

1 2

0 3

4 0

3 1

2 2

1 3

0 4

For example variable y21 in the LMI criterion corresponds to the relaxation of monomial
x2

1x2. It can be found at row 7 in matrix sedumi.pows so y21 is the 7th decision variable
in SeDuMi dual vector sedumi.y. Similarly, variable y40 corresponds to the relaxation of
monomial x4

1. It is located at entry number 10 in the vector of LMI relaxed variables.

Note in particular that LMI relaxed variables are returned by GloptiPoly at the top of
dual vector sedumi.y. They correspond to relaxations of monomials of first degree.

In general, the LMI relaxed vector is not necessarily feasible for the original optimization
problem. However, the LMI relaxed vector is always feasible when minimizing a polyno-
mial over linear constraints. In this particular case, evaluating the criterion at the LMI
relaxed vector provides an upper bound on the global minimum, whereas the optimal
criterion of the LMI relaxation is always a lower bound, see the example of section 5.
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6.2 Tuning SeDuMi parameters

If the solution returned by GloptiPoly is not accurate enough, one can specify the desired
accuracy to SeDuMi. In a similar way, one can suppress the screen output, change the
algorithm or tune the convergence parameters in SeDuMi. This can be done by specifying
a third input argument:

gloptipoly(P, [], pars)

which is a Matlab structure complying with SeDuMi’s syntax:

pars.eps - Required accuracy, default 1e-9;

pars.fid - 0 for no screen output in both GloptiPoly and SeDuMi, default 1;

pars.alg, pars.beta, pars.theta - SeDuMi algorithm parameters.

Refer to SeDuMi user’s guide for more information on other fields in pars to override
default parameter settings.

6.3 Unbounded LMI relaxations. Feasibility radius

With some problems, it may happen that LMI relaxations of low orders are not stringent
enough. As a result, the criterion is not bounded, LMI decision variables can reach large
values which may cause numerical difficulties. In this case, GloptiPoly issues a warning
message saying that either SeDuMi primal problem is infeasible, or that SeDuMi dual
problem is unbounded.

As a remedy, we can enforce a compacity constraint on the variables in the original
optimization problem. For example in the case of three variables, we may specify the Eu-
clidean norm constraint ’x1^2+x2^2+x3^2 <= radius’ as an additional string argument
to DefiPoly, where the positive real number radius is large enough, say 1e9.

Another, slightly different way out is to enforce a feasibility radius on the LMI decision
variables within the SeDuMi solver. A large enough positive real number can be specified
as an additional field

pars.radius - Feasibility radius, default none;

in the SeDuMi parameter structure pars introduced in section 6.2. All SeDuMi dual
variables are then constrained to a Lorenz cone.
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6.4 Scaling decision variables

For numerical reasons, it may be useful to scale problem variables. Scalings on decision
variables can be specified as an additional field

pars.scaling - Scaling on decision variables, default none.

If ki denotes entries in vector pars.scaling, then a decision variable xi in the original
optimization problem will be replaced by kixi in the scaled problem.

As an example, consider problem [3, Pb. 5.3] where real intersections of the following
curves must be found:

F (x, y) = −2− 7x+ 14x3 − 7x5 + x7 + (7− 42x2 + 35x4 − 7x6)y+
(16 + 42x− 70x3 + 21x5)y2 + (−14 + 70x2 − 35x4)y3+
(−20− 35x+ 35x3)y4 + (7− 21x2)y5 + (8 + 7x)y6 − y7 − y8 = 0

Fy(x, y) = 7− 42x2 + 35x4 − 7x6 + 2(16 + 42x− 70x3 + 21x5)y+
3(−14 + 70x2 − 35x4)y2 + 4(−20− 35x+ 35x3)y3+
5(7− 21x2)y4 + 6(8 + 7x)y5 − 7y6 − 8y7 = 0

See figure 6, where solutions are represented by stars. Suppose that we are interested in

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

x

y

Figure 6: Intersections of two seventh and eighth degree polynomial curves.
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finding the solution with minimum x. For numerical reasons, GloptiPoly fails to converge
when solving LMI relaxations of increasing orders. Because we know from figure 6 that
the solution with minimum x is around the point [−4 − 2], we enforce pars.scaling

= [4 2]. At the sixth LMI relaxation, GloptiPoly then successfully returns the optimal
solution [−3.9130 − 1.9507].

6.5 More on detecting global optimality and extracting globally
optimal solutions

Following the concepts introduced in section 6.1, we denote by Mp
q the moment matrix

or degree q associated with the optimal solution of the LMI relaxation of order p, as
returned by GloptiPoly in matrix sedumi.M{q} where 1 ≤ q ≤ p. For consistency, let
Mp

0 = 1. With these notations, global optimality is ensured at some relaxation order p in
the following cases:

• When LMI relaxed variables satisfy all the original problem constraints and reach
the objective of the LMI relaxation.

• When rank Mp
q = rank Mp

q−r for some q = r, . . . , p. Here r denotes the smallest
integer such that 2r is greater than or equal to the maximum degree occurring in
the polynomial constraints.

Evaluating the rank of a matrix is a difficult task, so an additional field

pars.ranktol - relative threshold for rank evaluation, default 1e-3;

is available in the SeDuMi parameter structure pars introduced in section 6.2. A matrix
has numerical rank say 3 when the ratio between its 3rd and 4th singular value is less
than the relative threshold.

When global optimality is ensured at some relaxation order p and there are only finitely
many globally optimal solutions, then these solutions can be extracted by the eigenvalue
method of [3], see also [2]. The algorithm is based on Gaussian elimination with column
pivoting and Schur decomposition. Column pivoting is active when some pivot element
has absolute value less than

pars.pivotol - threshold for basis computation, default 1e-6.

As an example, consider quadratic problem [6, Ex. 5]:

>> P = defipoly({’min -(x1-1)^2-(x1-x2)^2-(x2-3)^2’,...

’1-(x1-1)^2 >= 0’, ’1-(x1-x2)^2 >= 0’,...

’1-(x2-3)^2 >= 0’}, ’x1,x2’);
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The second LMI relaxation yields a criterion of −2 and moment matrices M2
1 and M2

2

of ranks 3 and 3 respectively, showing that the global optimum has been reached (since
r = 1 here). GloptiPoly automatically extracts the 3 globally optimal solutions:

>> [output, sedumi] = gloptipoly(P, 2);

>> svd(sedumi.M{1})’

ans =

8.8379 0.1311 0.0299

>> svd(sedumi.M{2})’

ans =

64.7887 1.7467 0.3644 0.0000 0.0000 0.0000

>> output

output =

status: 1

crit: -2.0000

sol: {[2x1 double] [2x1 double] [2x1 double]}

>> output.sol{:}

ans =

1.0000

2.0000

ans =

2.0000

2.0000

ans =

2.0000

3.0000

6.6 Perturbing the criterion

When the global optimum is reached, another way to extract solutions can be to slightly
perturb the criterion of the LMI. In order to do this, there is an additional field

pars.pert - Perturbation vector of the criterion, default zero.

The field can either by a positive scalar (all entries in SeDuMi dual vector y are equally
perturbed in the criterion), or a vector (entries are perturbed individually).

As example, consider the third LMI relaxation of the Max-Cut problem on the antiweb
AW 2

9 graph introduced in section 4.7. From the problem knowledge, we know that the
global optimum of 12 has been reached, but GloptiPoly is not able to detect global
optimality or extract optimal solutions. Due to problem symmetry, the LMI relaxed
vector is almost zero:
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>> [output, sedumi] = gloptipoly(P, 3);

>> norm(sedumi.y(1:9))

ans =

1.4148e-10

In order to recover an optimal solution, we just perturb randomly each entry in the
criterion:

>> pars.pert = 1e-3 * randn(1, 9);

>> [output, sedumi] = gloptipoly(P, 3, pars);

>> output.sol{:}’

ans =

Columns 1 through 7

-1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 -1.0000

Columns 8 through 9

1.0000 1.0000

6.7 Testing a vector

In order to test whether a given vector satisfies problem constraints (inequalities and
equalities) and to evaluate the corresponding criterion, we developed a small Matlab
script entitled TestPoly. The calling syntax is:

testpoly(P, x)

See section 2 to download the Matlab source file testpoly.m.

Warning messages are displayed by TestPoly when constraints are not satisfied by the
input vector. Some numerical tolerance can be specified as an optional input argument.

7 Performance

7.1 Continuous optimization problems

We report in table 2 the performance of GloptiPoly on a series of benchmark non-convex
continuous optimization examples. In all reported instances the global optimum was
reached exactly by an LMI relaxation of small order, reported in the column entitled
’order’ relative to the minimal order of Shor’s relaxation, see section 4.6. CPU times
are in seconds, all the computations were carried out with Matlab 6.1 and SeDuMi 1.05
with relative accuracy pars.eps = 1e-9 on a Sun Blade 100 workstation with 640 Mb
of RAM running under SunOS 5.8. ’LMI vars’ is the dimension of SeDuMi dual vector y,
whereas ’LMI size’ is the dimension of SeDuMi primal vector x, see section 6.1. Quadratic
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problems 2.8, 2.9 and 2.11 in [4] involve more than 19 variables and could not be handled
by the current version of GloptiPoly, see section 4.3. Except for problems 2.4 and 3.2, the
computational load is moderate.

problem variables constraints degree LMI vars LMI size CPU order
[6, Ex. 1] 2 0 4 14 36 0.41 0
[6, Ex. 2] 2 0 4 14 36 0.42 0
[6, Ex. 3] 2 0 6 152 2025 3.66 +5
[6, Ex. 5] 2 3 2 14 63 0.71 +1

[4, Pb. 2.2] 5 11 2 461 7987 31.8 +2
[4, Pb. 2.3] 6 13 2 209 1421 5.40 +1
[4, Pb. 2.4] 13 35 2 2379 17885 2810 +1
[4, Pb. 2.5] 6 15 2 209 1519 4.00 +1
[4, Pb. 2.6] 10 31 2 1000 8107 194 +1
[4, Pb. 2.7] 10 25 2 1000 7381 204 +1
[4, Pb. 2.10] 10 11 2 1000 5632 125 +1
[4, Pb. 3.2] 8 22 2 3002 71775 7062 +2
[4, Pb. 3.3] 5 16 2 125 1017 3.15 +1
[4, Pb. 3.4] 6 16 2 209 1568 4.32 +1
[4, Pb. 3.5] 3 8 2 164 4425 7.09 +3
[4, Pb. 4.2] 1 2 6 6 34 0.52 0
[4, Pb. 4.3] 1 2 50 50 1926 2.69 0
[4, Pb. 4.4] 1 2 5 6 34 0.72 0
[4, Pb. 4.5] 1 2 4 4 17 0.45 0
[4, Pb. 4.6] 2 2 6 27 172 1.16 0
[4, Pb. 4.7] 1 2 6 6 34 0.57 0
[4, Pb. 4.8] 1 2 4 4 17 0.44 0
[4, Pb. 4.9] 2 5 4 14 73 0.86 0
[4, Pb. 4.10] 2 6 4 44 697 1.45 +2

Table 2: Continuous optimization problems. CPU times and LMI relaxation orders re-
quired to reach global optima.

7.2 Discrete optimization problems

We report in table 3 the performance of GloptiPoly on a series of small-size combinatorial
optimization problems. In all reported instances the global optimum was reached exactly
by an LMI relaxation of small order, with a moderate computational load.

Note that the computational load can further be reduced with the help of SeDuMi’s
accuracy parameter. For all the examples described here and in the previous section,
we set pars.eps = 1e-9. For illustration, in the case of the Max-Cut problem on the
12-node graph in [1] (last row in table 3), when setting pars.eps = 1e-3 we obtain the
global optimum with relative error 0.01% in 37.5 seconds of CPU time. In this case, it
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means a reduction by half of the computational load without significant impact on the
criterion.

problem vars constr deg LMI vars LMI size CPU order
QP [4, Pb. 13.2.1.1] 4 4 2 10 29 0.33 0
QP [4, Pb. 13.2.1.2] 10 0 2 385 3136 10.5 +1

Max-Cut P1 [4, Pb. 11.3] 10 0 2 385 3136 7.34 +1
Max-Cut P2 [4, Pb. 11.3] 10 0 2 385 3136 9.40 +1
Max-Cut P3 [4, Pb. 11.3] 10 0 2 385 3136 8.25 +1
Max-Cut P4 [4, Pb. 11.3] 10 0 2 385 3136 8.38 +1
Max-Cut P5 [4, Pb. 11.3] 10 0 2 385 3136 12.1 +1
Max-Cut P6 [4, Pb. 11.3] 10 0 2 385 3136 8.37 +1
Max-Cut P7 [4, Pb. 11.3] 10 0 2 385 3136 10.0 +1
Max-Cut P8 [4, Pb. 11.3] 10 0 2 385 3136 9.16 +1
Max-Cut P9 [4, Pb. 11.3] 10 0 2 385 3136 11.3 +1

Max-Cut cycle C5 [1] 5 0 2 30 256 0.35 +1
Max-Cut complete K5 [1] 5 0 2 31 676 0.75 +2

Max-Cut 5-node [1] 5 0 2 30 256 0.47 +1
Max-Cut antiweb AW 2

9 [1] 9 0 2 465 16900 63.3 +2
Max-Cut 10-node Petersen [1] 10 0 2 385 3136 7.21 +1

Max-Cut 12-node [1] 12 0 2 793 6241 73.2 +1

Table 3: Discrete optimization problems. CPU times and LMI relaxation orders required
to reach global optima.

8 Conclusion

Even though GloptiPoly is basically meant for small- and medium-size problems, the cur-
rent limitation on the number of variables (see section 4.3) is somehow restrictive. For
example, the current version of GloptiPoly is not able to handle quadratic problems with
more than 19 variables, whereas it is known that SeDuMi running on a standard work-
station can solve Shor’s relaxation of quadratic Max-Cut problems with several hundreds
of variables. The limitation of GloptiPoly on the number of variables should be removed
in the near future.

GloptiPoly must be considered as a general-purpose software with a user-friendly interface
to solve in a unified way a wide range of non-convex optimization problems. As such,
it cannot be considered as a competitor to specialized codes for solving e.g. polynomial
systems of equations or combinatorial optimization problems.

It is well-known that problems involving polynomial bases with monomials of increasing
powers are naturally badly conditioned. If lower and upper bounds on the optimization
variables are available as problem data, it may be a good idea to scale all the intervals
around one. Alternative bases such as Chebyshev polynomials may also prove useful.
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